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The object of mathematical rigor is to
sanction and legitimize the conquests
of intuition, and there was never any
other object for it.

—Jacques Hadamard1

If mathematics describes an objective
world just like physics, there is no rea-
son why inductive methods should not
be applied in mathematics just the same
as in physics.

—Kurt Gödel2

Introduction
Recent years have seen the flowering of “experi-
mental” mathematics, namely the utilization of
modern computer technology as an active tool in
mathematical research. This development is not

limited to a handful of researchers nor to a 
handful of universities, nor is it limited to one 
particular field of mathematics. Instead, it involves
hundreds of individuals, at many different insti-
tutions, who have turned to the remarkable new
computational tools now available to assist in their
research, whether it be in number theory, algebra,
analysis, geometry, or even topology. These tools
are being used to work out specific examples, 
generate plots, perform various algebraic and 
calculus manipulations, test conjectures, and ex-
plore routes to formal proof. Using computer tools
to test conjectures is by itself a major timesaver
for mathematicians, as it permits them to quickly
rule out false notions.

Clearly one of the major factors here is the 
development of robust symbolic mathematics 
software. Leading the way are the Maple and Math-
ematica products, which in the latest editions are
far more expansive, robust, and user-friendly than
when they first appeared twenty to twenty-five
years ago. But numerous other tools, some of which
emerged only in the past few years, are also play-
ing key roles. These include: (1) the Magma com-
putational algebra package, developed at the 
University of Sydney in Australia; (2) Neil Sloane’s
online integer sequence recognition tool, available
at http://www.research.att.com/njas/
sequences; (3) the inverse symbolic calculator (an
online numeric constant recognition facility), avail-
able at http://www.cecm.sfu.ca/projects/ISC;
(4) the electronic geometry site at http://www.
eg-models.de ;  and numerous others. See
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http://www.experimentalmath.info for a more
complete list, with links to their respective websites.

We must of course also give credit to the com-
puter industry. In 1965 Gordon Moore, before he
served as CEO of Intel, observed:

The complexity for minimum compo-
nent costs has increased at a rate of
roughly a factor of two per year. . . . Cer-
tainly over the short term this rate can
be expected to continue, if not to in-
crease. Over the longer term, the rate of
increase is a bit more uncertain, al-
though there is no reason to believe it
will not remain nearly constant for at
least 10 years. [29]

Nearly forty years later, we observe a record of
sustained exponential progress that has no peer in
the history of technology. Hardware progress alone
has transformed mathematical computations that
were once impossible into simple operations that
can be done on any laptop.

Many papers have now been published in the ex-
perimental mathematics arena, and a full-fledged
journal, appropriately titled Experimental Mathe-
matics, has been in operation for twelve years.
Even older is the AMS journal Mathematics of Com-
putation, which has been publishing articles in the
general area of computational mathematics since
1960 (since 1943 if you count its predecessor).
Just as significant are the hundreds of other recent
articles that mention computations but which oth-
erwise are considered entirely mainstream work.
All of this represents a major shift from when the
present authors began their research careers, when
the view that “real mathematicians don’t compute”
was widely held in the field.

In this article, we will summarize some of the
discoveries and research results of recent years, by
ourselves and by others, together with a brief de-
scription of some of the key methods employed.
We will then attempt to ascertain at a more fun-
damental level what these developments mean for
the larger world of mathematical research.

Integer Relation Detection
One of the key techniques used in experimental
mathematics is integer relation detection, which in
effect searches for linear relationships satisfied
by a set of numerical values. To be precise, given
a real or complex vector (x1, x2, · · · , xn), an inte-
ger relation algorithm is a computational scheme
that either finds the n integers (ai) , not all zero,
such that a1x1 + a2x2 + · · ·anxn = 0 (to within
available numerical accuracy) or else establishes
that there is no such integer vector within a ball 
of radius A about the origin, where the metric 
is the Euclidean norm: A = (a2

1 + a2
2 + · · · + a2

n)
1/2 .

Integer relation computations require very high

precision in the input vector x to obtain numeri-
cally meaningful results—at least dn-digit precision,
where d = log10A . This is the principal reason for
the interest in very high-precision arithmetic in
experimental mathematics. In one recent integer re-
lation detection computation, 50,000-digit arith-
metic was required to obtain the result [9].

At the present time, the best-known integer 
relation algorithm is the PSLQ algorithm [26] of
mathematician-sculptor Helaman Ferguson, who,
together with his wife, Claire, received the 2002
Communications Award of the Joint Policy Board
for Mathematics (AMS-MAA-SIAM). Simple formu-
lations of the PSLQ algorithm and several variants
are given in [10]. The PSLQ algorithm, together
with related lattice reduction schemes such as LLL,
was recently named one of ten “algorithms of the
century” by the publication Computing in Science
and Engineering [4]. PSLQ or a variant is imple-
mented in current releases of most computer al-
gebra systems.

Arbitrary Digit Calculation Formulas
The best-known application of PSLQ in experi-
mental mathematics is the 1995 discovery, by
means of a PSLQ computation, of the “BBP” formula
for π :

π =
∞∑
k=0

1
16k

(
4

8k+ 1
− 2

8k+ 4
− 1

8k+ 5
− 1

8k+ 6

)
.

(1)

This formula permits one to directly calculate bi-
nary or hexadecimal digits beginning at the n-th
digit, without needing to calculate any of the first
n− 1 digits [8], using a simple scheme that re-
quires very little memory and no multiple-precision
arithmetic software.

It is easiest to see how this individual digit-
calculating scheme works by illustrating it for a sim-
ilar formula, known at least since Euler, for log 2:

log 2 =
∞∑
n=1

1
n2n

.

Note that the binary expansion of log 2 beginning
after the first d binary digits is simply {2d log 2} ,
where by {·} we mean fractional part. We can write

(2)

{2d log 2} =



∞∑
n=1

2d−n

n


 =




d∑
n=1

2d−n

n


+




∞∑
n=d+1

2d−n

n




=



d∑
n=1

2d−n mod n
n


+




∞∑
n=d+1

2d−n

n


 ,

where we insert “mod n” in the numerator of 
the first term of (2), since we are interested only
in the fractional part after division by n. Now the
expression 2d−n mod n may be evaluated very
rapidly by means of the binary algorithm for ex-
ponentiation, where each multiplication is reduced 
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modulo n. The entire scheme 
indicated by formula (2) can be
implemented on a computer using
ordinary 64-bit or 128-bit arith-
metic; high-precision arithmetic
software is not required. The re-
sulting floating-point value, when
expressed in binary format, gives
the first few digits of the 
binary expansion of log 2 begin-
ning at position d + 1. Similar 
calculations applied to each of the
four terms in formula (1) yield a
similar result for π . The largest
computation of this type to date
is binary digits of π beginning at
the quadrillionth (1015-th) binary
digit, performed by an interna-
tional network of computers 
organized by Colin Percival.

The BBP formula for π has even found a prac-
tical application: it is now employed in the g95
Fortran compiler as part of transcendental function
evaluation software.

Since 1995 numerous other formulas of this
type have been found and proven using a similar
experimental approach. Several examples include:

“Figure Eight Knot Complement”;3 see Figure 1),
which is given by

V = 2
√

3
∞∑
n=1

1

n
(

2n
n

) 2n−1∑
k=n

1
k

= 2.029883212819307250042405108549 . . . ,

has been identified in terms of a BBP-type formula
by application of Ferguson’s own PSLQ algorithm.
In particular, British physicist David Broadhurst
found in 1998, using a PSLQ program, that

V =
√

3
9

∞∑
n=0

(−1)n

27n

×
[

18
(6n+ 1)2

− 18
(6n+ 2)2

− 24
(6n+ 3)2

− 6
(6n+ 4)2

+ 2
(6n+ 5)2

]
.

This result is proven in [15, Chap. 2, Prob. 34].

Does Pi Have a Nonbinary BBP Formula?
Since the discovery of the BBP formula for π in
1995, numerous researchers have investigated, by
means of computational searches, whether there
is a similar formula for calculating arbitrary digits
of π in other number bases (such as base 10). Alas,
these searches have not been fruitful.

Recently, one of the present authors (JMB), to-
gether with David Borwein (Jon’s father) and William
Galway, established that there is no degree-1 BBP-
type formula for π for bases other than powers of
two (although this does not rule out some other
scheme for calculating individual digits). We will
sketch this result here. Full details and some related
results can be found in [20].

In the following, �(z) and �(z) denote the real
and imaginary parts of z , respectively. The integer
b > 1 is not a proper power if it cannot be written
as cm for any integers c and m > 1. We will use the
notation ordp(z) to denote the p-adic order of the
rational z ∈ Q. In particular, ordp(p) = 1 for prime
p ,  while ordp(q) = 0 for primes q ≠ p ,  and
ordp(wz) = ordp(w)+ ordp(z) . The notation νb(p)
will mean the order of the integer b in the multi-
plicative group of the integers modulo p. We will
say that p is a primitive prime factor of bm − 1 if
m is the least integer such that p|(bm − 1). Thus p
is a primitive prime factor of bm − 1 provided
νb(p) =m. Given the Gaussian integer z ∈ Q[i] and
the rational prime p ≡ 1 (mod 4), let θp(z) denote
ordp(z)− ordp(z), where p and p are the two con-
jugate Gaussian primes dividing p and where we
require 0 < �(p) < �(p) to make the definition of
θp unambiguous. Note that

θp(wz) = θp(w )+ θp(z).(8)

Given κ ∈ R, with 2 ≤ b ∈ Z and b not a proper
power, we say that κ has a Z-linear or Q -linear

π
√

3 = 9
32

∞∑
k=0

1
64k

(
16

6k+ 1
− 8

6k+ 2
− 2

6k+ 4
− 1

6k+ 5

)
,

(3)

π2 = 1
8

∞∑
k=0

1
64k

[
144

(6k+ 1)2
− 216

(6k+ 2)2
− 72

(6k+ 3)2
− 54

(6k+ 4)2
+ 9

(6k+ 5)2

]
,

(4)

π2 = 2
27

∞∑
k=0

1
729k

[
243

(12k+ 1)2
− 405

(12k+ 2)2
− 81

(12k+ 4)2
− 27

(12k+ 5)2

− 72
(12k+ 6)2

− 9
(12k+ 7)2

− 9
(12k+ 8)2

− 5
(12k+ 10)2

+ 1
(12k+ 11)2

]
,

(5)

3Reproduced by permission of the sculptor.

√
3 arctan

(√
3

7

)
=

∞∑
k=0

1
27k

(
3

3k+ 1
+ 1

3k+ 2

)
,(6)

25
2

log


781

256

(
57− 5

√
5

57+ 5
√

5

)√5

 = ∞∑

k=0

1
55k

(
5

5k+ 2
+ 1

5k+ 3

)
.

(7)

Figure 1. Ferguson’s “Figure
Eight Knot Complement”

sculpture.

Formulas (3) and (4) permit arbitrary-position 
binary digits to be calculated for π

√
3 and π2. 

Formulas (5) and (6) permit the same for ternary
(base-3) expansions of π2 and 

√
3 arctan(

√
3/7).

Formula (7) permits the same for the base-5 ex-
pansion of the curious constant shown. A com-
pendium of known BBP-type formulas, with 
references, is available at [5].

One interesting twist here is that the hyperbolic
volume of one of Ferguson’s sculptures (the 
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Machin-type BBP arctangent formula to the base b
if and only if κ can be written as a Z-linear or Q -
linear combination (respectively) of generators of
the form

arctan
(

1
bm

)
= � log

(
1+ i

bm

)

= bm
∞∑
k=0

(−1)k

b2mk(2k+ 1)
.(9)

We shall also use the following result, first proved
by Bang in 1886:

Theorem 1. The only cases where bm − 1 has no
primitive prime factor(s) are when b = 2, m = 6,
bm − 1 = 32 · 7 or  when b = 2N − 1,N ∈ Z, m = 2,
bm − 1 = 2N+1(2N−1 − 1) .

We can now state the main result:

Theorem 2. Given b > 2 and not a proper power,
there is no Q-linear Machin-type BBP arctangent for-
mula for π .

Proof: It follows immediately from the definition
of a Q -linear Machin-type BBP arctangent formula
that any such formula has the form

π = 1
n

M∑
m=1

nm� log(bm − i),(10)

where n > 0 ∈ Z , nm ∈ Z, and M ≥ 1, nM ≠ 0. This
implies that

M∏
m=1

(bm − i)nm ∈ eniπQ× = Q×.(11)

For any b > 2 and not a proper power, it follows
from Bang’s Theorem that b4M − 1 has a primitive
prime factor, say p. Furthermore, p must be odd,
since p = 2 can only be a primitive prime factor of
bm − 1 when b is odd and m = 1. Since p is a prim-
itive prime factor, it does not divide b2M − 1, and
so p must divide b2M + 1 = (bM + i)(bM − i) . We
cannot have both p|bM + i and p|bM − i, since this
would give the contradiction that p|(bM + i)−
(bM − i) = 2i. It follows that p ≡ 1 (mod 4) and that
p factors as p = pp over Z[i], with exactly one of
p, p dividing bM − i. Referring to the definition of
θ, we see that we must have θp(bM − i) ≠ 0. Fur-
thermore, for any m < M , neither p nor p can di-
vide bm − i , since this would imply p | b4m − 1,
4m < 4M , contradicting the fact that p is a primi-
tive prime factor of b4M − 1. So for m < M, we have
θp(bm − i) = 0. Referring to equation (10) and using
equation (8) and the fact that nM ≠ 0, we get the
contradiction

(12)

0 ≠ nMθp(bM − i)

=
M∑
m=1

nmθp(bm − i) = θp(Q×) = 0.

Thus our assumption that there was a b-ary Machin-
type BBP arctangent formula for π must be false.

Normality Implications of the BBP Formulas
One interesting (and unanticipated) discovery is that
the existence of these computer-discovered BBP-
type formulas has implications for the age-old
question of normality for several basic mathe-
matical constants, including π and log 2. What’s
more, this line of research has recently led to a full-
fledged proof of normality for an uncountably in-
finite class of explicit real numbers.

Given a positive integer b, we will define a real
number α to be b-normal if every m-long string of
base-b digits appears in the base-b expansion of
α with limiting frequency b−m. In spite of the ap-
parently stringent nature of this requirement, it is
well known from measure theory that almost all real
numbers are b-normal, for all bases b. Nonetheless,
there are very few explicit examples of b-normal
numbers, other than the likes of Champernowne’s
constant 0.123456789101112131415 . . .. In par-
ticular, although computations suggest that virtu-
ally all of the well-known irrational constants of
mathematics (such as π, e, γ, log 2,

√
2, etc.) are

normal to various number bases, there is not a
single proof—not for any of these constants, not
for any number base.

Recently one of the present authors (DHB) and
Richard Crandall established the following result.

Let p(x) and q(x) be integer-coefficient polyno-
mials, with degp < degq , and q(x) having no 
zeroes for positive integer arguments. By an equidis-
tributed sequence in the unit interval we mean a
sequence (xn) such that for every subinterval (a, b),
the fraction #[xn ∈ (a, b)]/n tends to b − a in the
limit. The result is as follows:

Theorem 3. A constant α satisfying the BBP-type
formula

α =
∞∑
n=1

p(n)
bnq(n)

is b-normal if and only if the associated sequence
defined by x0 = 0 and, for n ≥ 1 ,  xn =
{bxn−1 + p(n)/q(n)} (where {·} denotes fractional
part as before), is equidistributed in the unit in-
terval.

For example, log 2 is 2-normal if and only if the
simple sequence defined by x0 = 0 and
{xn = 2xn−1 + 1/n} is equidistributed in the unit in-
terval. For π , the associated sequence is x0 = 0 and

xn =
{

16xn−1 +
120n2 − 89n+ 16

512n4 − 1024n3 + 712n2 − 206n+ 21

}
.

Full details of this result are given in [11] [15, 
Section 3.8].

It is difficult to know at the present time whether
this result will lead to a full-fledged proof of nor-
mality for, say, π or log 2. However, this approach
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has yielded a solid normality proof for another
class of reals: Given r ∈ [0,1), let rn be the n-th 
binary digit of r . Then for each r in the unit inter-
val, the constant

αr =
∞∑
n=1

1
3n23n+rn(13)

is 2-normal and transcendental [12]. What’s more,
it can be shown that whenever r ≠ s , then αr ≠ αs.
Thus (13) defines an uncountably infinite class of
distinct 2-normal, transcendental real numbers. A
similar conclusion applies when 2 and 3 in (13) are
replaced by any pair of relatively prime integers
greater than 1.

Here we will sketch a proof of normality for one
particular instance of these constants, namely
α0 =

∑
n≥1 1/(3n23n ). Its associated sequence can be

seen to be x0 = 0 and xn = {2xn−1 + cn} , where
cn = 1/n if n is a power of 3, and zero otherwise.
This associated sequence is a very good approxi-
mation to the sequence ({2nα0}) of shifted binary
fractions of α0. In fact, |{2nα0} − xn| < 1/(2n). The
first few terms of the associated sequence are

where ζ(s) =∑n≥1 n−s is the Riemann zeta func-
tion. Au-Yeung had computed the sum in (14) to
500,000 terms, giving an accuracy of five or six dec-
imal digits. Suspecting that his discovery was
merely a modest numerical coincidence, Borwein
sought to compute the sum to a higher level of pre-
cision. Using Fourier analysis and Parseval’s equa-
tion, he wrote

1
2π

∫ π
0

(π − t)2 log2(2 sin
t
2

)dt =
∞∑
n=1

(
∑n
k=1

1
k )2

(n+ 1)2
.

(15)

The series on the right of (15) permits one to eval-
uate (14), while the integral on the left can be com-
puted using the numerical quadrature facility of
Mathematica or Maple. When he did this, Borwein
was surprised to find that the conjectured identity
(14) holds to more than 30 digits. We should add
here that by good fortune, 17/360 = 0.047222 . . .
has period one and thus can plausibly be recognized
from its first six digits, so that Au-Yeung’s nu-
merical discovery was not entirely far-fetched.

Borwein was not aware at the time that (14) fol-
lows directly from a 1991 result due to De Doelder
and had even arisen in 1952 as a problem in the
American Mathematical Monthly. What’s more, it
turns out that Euler considered some related sum-
mations. Perhaps it was just as well that Borwein
was not aware of these earlier results—and indeed
of a large, quite deep and varied literature [21]—
because pursuit of this and similar questions had
led to a line of research that continues to the pre-
sent day.

First define the multi-zeta constant

ζ(s1, s2, · · · , sk) :=
∑

n1>n2>···>nk>0

k∏
j=1

n−|sj |j σ−nj
j ,

where the s1, s2, . . . , sk are nonzero integers and
the σj := signum(sj ). Such constants can be con-
sidered as generalizations of the Riemann zeta
function at integer arguments in higher dimen-
sions.

The analytic evaluation of such sums has relied
on fast methods for computing their numerical
values. One scheme, based on Hölder Convolution,
is discussed in [22] and implemented in EZFace+,
an online tool available at http://www.cecm.sfu.
ca/projects/ezface+. We will illustrate its ap-
plication to one specific case, namely the analytic
identification of the sum

S2,3 =
∞∑
k=1

(
1− 1

2
+ · · · + (−1)k+1 1

k

)2

(k+ 1)−3.

(16)

Expanding the squared term in (16), we have

0, 0, 0,
1
3
,

2
3
,

1
3
,

2
3
,

1
3
,

2
3
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

13
27
,

26
27
,

25
27
,

23
27
,

19
27
,

11
27
,

22
27
,

17
27
,

7
27
,

14
27
,

1
27
,

2
27
,

4
27
,

8
27
,

16
27
,

5
27
,

10
27
,

20
27
,

13
27
,

26
27
,

25
27
,

23
27
,

19
27
,

11
27
,

22
27
,

17
27
,

7
27
,

14
27
,

1
27
,

2
27
,

4
27
,

8
27
,

16
27
,

5
27
,

10
27
,

20
27
,

13
27
,

26
27
,

25
27
,

23
27
,

19
27
,

11
27
,

22
27
,

17
27
,

7
27
,

14
27
,

1
27
,

2
27
,

4
27
,

8
27
,

16
27
,

5
27
,

10
27
,

20
27
,

and so forth. The clear pattern is that of triply re-
peated segments, each of length 2 · 3m, where the
numerators range over all integers relatively prime
to and less than 3m+1.

Note the very even manner in which this se-
quence fills the unit interval. Given any subinter-
val (c, d) of the unit interval, it can be seen that this
sequence visits this subinterval no more than
3n(d − c)+ 3 times, among the first n elements,
provided that n > 1/(d − c) . It can then be shown
that the sequence ({2jα}) visits (c, d) no more than
8n(d − c) times, among the first n elements of this
sequence, so long as n is at least 1/(d − c)2. The 2-
normality of α0 then follows from a result given
in [28, p. 77]. Further details on these results are
given in [15, Sec. 4.3], [6], [12].

Euler’s Multi-Zeta Sums
In April 1993, Enrico Au-Yeung, an undergraduate
at the University of Waterloo, brought to the at-
tention of one of us (JMB) the curious result

(14)

∞∑
k=1

(
1+ 1

2
+ · · · + 1

k

)2

k−2

= 4.59987 . . . ≈ 17
4
ζ(4) = 17π4

360

http://www.cecm.sfu.ca/projects/ezface+
http://www.cecm.sfu.ca/projects/ezface+
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∑
0<i,j<k
k>0

(−1)i+j+1

ijk3 = −2ζ(3,−1,−1)+ ζ(3,2).(17)

Evaluating this in EZFace+, we quickly obtain

S2,3 = 0.1561669333811769158810359096879

8819368577670984030387295752935449707

5037440295791455205653709358147578. . . .

Given this numerical value, PSLQ or some other 
integer-relation-finding tool can be used 
to see if this constant satisfies a rational 
linear relation of certain constants. Our experi-
ence with these evaluations has suggested 
that likely terms would include: π5, π4log(2),
π3log2(2), π2log3(2), π log4(2), log5(2), π2ζ(3),
π log(2)ζ(3), log2(2)ζ(3), ζ(5), Li5(1/2). The 
result is quickly found to be:

S2,3 = 4 Li5

(
1
2

)
− 1

30
log5(2)− 17

32
ζ(5)

− 11
720

π4 log(2)+ 7
4
ζ(3) log2(2)

+ 1
18
π2 log3(2)− 1

8
π2ζ(3).

This result has been proven in various ways, both
analytic and algebraic. Indeed, all evaluations of
sums of the form ζ(±a1,±a2, · · · ,±am) with
weight w :=∑k am, for k < 8, as in (17) are estab-
lished.

One general result that is reasonably easily ob-
tained is the following, true for all n:

ζ({3}n) = ζ({2,1}n).(18)

On the other hand, a general proof of

ζ({2,1}n) ?= 23n ζ({−2,1}n)(19)

remains elusive. There has been abundant evidence
amassed to support the conjectured identity (19)
since it was discovered experimentally in 1996.
The first eighty-five instances of (19) were recently
affirmed in calculations by Petr Lison̆ek to 1000 dec-
imal place accuracy. Lisonek also checked the case
n = 163, a calculation that required ten hours run
time on a 2004-era computer. The only proof known
of (18) is a change of variables in a multiple inte-
gral representation that sheds no light on (19) (see
[21]).

Evaluation of Integrals
This same general strategy of obtaining a high-
precision numerical value, then attempting 
by means of PSLQ or other numeric-constant 
recognition facilities to identify the result as an 
analytic expression, has recently been applied 
with significant success to the age-old problem of
evaluating definite integrals. Obviously Maple and

Mathematica have some rather effective integration
facilities, not only for obtaining analytic results
directly, but also for obtaining high-precision 
numeric values. However, these products do have
limitations, and their numeric integration facili-
ties are typically limited to 100 digits or so, beyond
which they tend to require an unreasonable amount
of run time.

Fortunately, some new methods for numerical
integration have been developed that appear to 
be effective for a broad range of one-dimensional
integrals, typically producing up to 1000 digit 
accuracy in just a few seconds’ (or at most a few
minutes’) run time on a 2004-era personal computer,
and that are also well suited for parallel process-
ing [13], [14], [16, p. 312]. These schemes are based
on the Euler-Maclaurin summation formula [3, 
p. 180], which can be stated as follows: Let m ≥ 0
and n ≥ 1 be integers, and define h = (b − a)/n
and xj = a+ jh for 0 ≤ j ≤ n. Further assume that
the function f (x) is at least (2m+ 2)-times contin-
uously differentiable on [a, b]. Then

(20)

∫ b
a
f (x)dx = h

n∑
j=0

f (xj )−
h
2

(f (a)+ f (b))

−
m∑
i=1

h2iB2i

(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)
− E(h),

where B2i denote the Bernoulli numbers, and

E(h) = h2m+2(b − a)B2m+2f 2m+2(ξ)
(2m+ 2)!

for some ξ ∈ (a, b) . In the circumstance where the
function f (x) and all of its derivatives are zero at
the endpoints a and b (as in a smooth, bell-shaped
function), the second and third terms of the Euler-
Maclaurin formula (20) are zero, and we conclude
that the error E(h) goes to zero more rapidly than
any power of h.

This principle is utilized by transforming the in-
tegral of some C∞ function f (x) on the interval
[−1,1] to an integral on (−∞,∞) using the change
of variable x = g(t). Here g(x) is some monotonic,
infinitely differentiable function with the property
that g(x) → 1 as x→∞ and g(x) → −1 as x→ −∞,
and also with the property that g′(x) and all higher
derivatives rapidly approach zero for large positive
and negative arguments. In this case we can write,
for h > 0,

∫ 1

−1
f (x)dx =

∫∞
−∞
f (g(t))g′(t)dt

= h
∞∑

j=−∞
wjf (xj )+ E(h),
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where xj = g(hj) and wj = g′(hj) are abscissas and
weights that can be precomputed. If g′(t) and its
derivatives tend to zero sufficiently rapidly for
large t , positive and negative, then even in cases
where f (x) has a vertical derivative or an integrable
singularity at one or both endpoints, the resulting
integrand f (g(t))g′(t) is, in many cases, a smooth
bell-shaped function for which the Euler-
Maclaurin formula applies. In these cases, the error
E(h) in this approximation decreases faster than
any power of h.

Three suitable g functions are g1(t) = tanh t,
g2(t) = erf t, and g3(t) = tanh(π/2 · sinh t) . Among
these three, g3(t) appears to be the most effective
for typical experimental math applications. For
many integrals, “tanh-sinh” quadrature, as the re-
sulting scheme is known, achieves quadratic con-
vergence: reducing the interval h in half roughly
doubles the number of correct digits in the quad-
rature result. This is another case where we have
more heuristic than proven knowledge.

As one example, recently the present authors,
together with Greg Fee of Simon Fraser University
in Canada, were inspired by a recent problem in the
American Mathematical Monthly [2]. They found by
using a tanh-sinh quadrature program, together
with a PSLQ integer relation detection program, that
if C(a) is defined by

C(a) =
∫ 1

0

arctan(
√
x2 + a2)dx√

x2 + a2(x2 + 1)
,

then

C(0) = π log 2/8+G/2,
C(1) = π/4−π

√
2/2+ 3 arctan(

√
2)/
√

2,

C(
√

2) = 5π2/96.

Here G =∑k≥0(−1)k/(2k+ 1)2 is Catalan’s con-
stant—the simplest number whose irrationality is
not established but for which abundant numerical
evidence exists. These experimental results then led
to the following general result, rigorously estab-
lished, among others:

∫∞
0

arctan(
√
x2 + a2)dx√

x2 + a2(x2 + 1)

= π
2
√
a2 − 1

[
2 arctan(

√
a2 − 1)− arctan(

√
a4 − 1)

]
.

As a second example, recently the present au-
thors empirically determined that

2√
3

∫ 1

0

log6(x) arctan[x
√

3/(x− 2)]
x+ 1

dx = 1
81648

[−229635L3(8)

+ 29852550L3(7) log 3− 1632960L3(6)π2 + 27760320L3(5)ζ(3)

− 275184L3(4)π4 + 36288000L3(3)ζ(5)− 30008L3(2)π6

− 57030120L3(1)ζ(7) ] ,

where L3(s) =∑∞
n=1 [1/(3n− 2)s − 1/(3n− 1)s ] .

Based on these experimental results, general results
of this type have been conjectured but not yet rig-
orously established.

A third example is the following:

24
7
√

7

∫ π/2
π/3

log

∣∣∣∣∣ tan t +√7
tan t −√7

∣∣∣∣∣dt ?= L−7(2)(21)

where

L−7(s) =
∞∑
n=0

[
1

(7n+ 1)s
+ 1

(7n+ 2)s
− 1

(7n+ 3)s

+ 1
(7n+ 4)s

− 1
(7n+ 5)s

− 1
(7n+ 6)s

]
.

The “identity” (21) has been verified to over 5000
decimal digit accuracy, but a proof is not yet known.
It arises from the volume of an ideal tetrahedron
in hyperbolic space, [15, pp. 90–1]. For algebraic
topology reasons, it is known that the ratio of the
left-hand to the right-hand side of (21) is rational.

A related experimental result, verified to 1000
digit accuracy, is

0
?= −2J2 − 2J3 − 2J4 + 2J10 + 2J11 + 3J12 + 3J13 + J14 − J15

−J16 − J17 − J18 − J19 + J20 + J21 − J22 − J23 + 2J25,

where Jn is the integral in (21), with limits nπ/60
and (n+ 1)π/60.

The above examples are ordinary one-
dimensional integrals. Two-dimensional integrals
are also of interest. Along this line we present a
more recreational example discovered experimen-
tally by James Klein—and confirmed by Monte
Carlo simulation. It is that the expected distance
between two random points on different sides of
a unit square is

2
3

∫ 1

0

∫ 1

0

√
x2 + y2 dxdy + 1

3

∫ 1

0

∫ 1

0

√
1+ (u− v)2 dudv

= 1
9

√
2+ 5

9
log(

√
2+ 1)+ 2

9
,

and the expected distance between two random
points on different sides of a unit cube is

4
5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + (z −w )2 dw dxdy dz

+1
5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
1+ (y − u)2 + (z −w )2 dudw dy dz

= 4
75
+ 17

75

√
2− 2

25

√
3− 7

75
π

+ 7
25

log
(
1+

√
2
)
+ 7

25
log

(
7+ 4

√
3
)
.

See [7] for details and some additional examples.
It is not known whether similar closed forms exist
for higher-dimensional cubes.
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Ramanujan’s AGM Continued Fraction
Given a, b, η > 0, define

Rη(a, b) = a

η+ b2

η+ 4a2

η+ 9b2

η+ ...

.

This continued fraction arises in Ramanujan’s Note-
books. He discovered the beautiful fact that

Rη (a, b)+ Rη (b, a)
2

= Rη
(a+ b

2
,
√
ab
)
.

The authors wished to record this in [15] and
wished to computationally check the identity. A first
attempt to numerically compute R1 (1,1) directly
failed miserably, and with some effort only three
reliable digits were obtained: 0.693 . . .. With hind-
sight, the slowest convergence of the fraction oc-
curs in the mathematically simplest case, namely
when a = b. Indeed R1 (1,1) = log 2, as the first
primitive numerics had tantalizingly suggested.

Attempting a direct computation of R1(2,2)
using a depth of 20000 gives us two digits. Thus
we must seek more sophisticated methods. From
formula (1.11.70) of [16] we see that for 0 < b < a,

(22)

R1(a, b)

= π
2

∑
n∈Z

aK(k)
K2(k)+ a2n2π2 sech

(
nπ

K(k′)
K(k)

)
,

where k = b/a = θ2
2/θ2

3 , k′ =
√

1− k2. Here θ2, θ3

are Jacobian theta functions and K is a complete
elliptic integral of the first kind.

Writing the previous equation as a Riemann
sum, we have

(23)

R(a) := R1(a,a) =
∫∞

0

sech(πx/(2a))
1+ x2

dx

= 2a
∞∑
k=1

(−1)k+1

1+ (2k− 1)a
,

where the final equality follows from the Cauchy-
Lindelof Theorem. This sum may also be written 

as R(a) = 2a
1+aF

(
1

2a +
1
2 ,1; 1

2a +
3
2 ;−1

)
. The latter

form can be used in Maple or Mathematica to 
determine

R(2) = 0.974990988798722096719900334529 . . . .

This constant, as written, is a bit difficult to
recognize, but if one first divides by 

√
2, one can

obtain, using the Inverse Symbolic Calculator, an
online tool available at the URL http://www.
cecm.sfu.ca/projects/ISC/ISCmain.html, that
the quotient is π/2− log(1+

√
2). Thus we con-

clude, experimentally, that

R(2) =
√

2[π/2− log(1+
√

2)].

Indeed, it follows (see [19]) that

R(a) = 2
∫ 1

0

t1/a

1+ t2 dt.

Note that R(1) = log 2. No nontrivial closed form
is known for R(a, b) with a ≠ b, although

R1

(
1

4π
β
(

1
4
,
1
4

)
,
√

2
8π

β
(

1
4
,
1
4

))
= 1

2

∑
n∈Z

sech(nπ )
1+ n2

is close to closed. Here β denotes the classical Beta
function. It would be pleasant to find a direct proof
of (23). Further details are to be found in [19], [17],
[16].

Study of these Ramanujan continued fractions
has been facilitated by examining the closely related
dynamical system t0 = 1, t1 = 1, and

Figure 2. Dynamics and attractors of various
iterations.

http://www.cecm.sfu.ca/projects/ISC/ISCmain.html
http://www.cecm.sfu.ca/projects/ISC/ISCmain.html
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tn := tn(a, b) = 1
n
+ωn−1

(
1− 1

n

)
tn−2,(24)

where ωn = a2 or b2 (from the Ramanujan con-
tinued fraction definition), depending on whether
n is even or odd.

If one studies this based only on numerical val-
ues, nothing is evident; one only sees that tn → 0
fairly slowly. However, if we look at this iteration
pictorially, we learn significantly more. In particu-
lar, if we plot these iterates in the complex plane
and then scale by 

√
n and color the iterations blue

or red depending on odd or even n, then some re-
markable fine structures appear; see Figure 2. With
assistance of such plots, the behavior of these it-
erates (and the Ramanujan continued fractions) is
now quite well understood. These studies have
ventured into matrix theory, real analysis, and even
the theory of martingales from probability theory
[19], [17], [18], [23].

There are some exceptional cases. Jacobsen-
Masson theory [17], [18] shows that the even/odd
fractions for R1(i, i) behave “chaotically”; neither
converge. Indeed, when a = b = i, (tn(i, i)) exhibit a
fourfold quasi-oscillation, as n runs through val-
ues mod 4. Plotted versus n, the (real) sequence tn(i)
exhibits the serpentine oscillation of four sepa-
rate “necklaces”. The detailed asymptotic is

Figure 3. The subtle fourfold serpent.

Figure 4. A period three dynamical system (odd and even
iterates).

tn(i, i) =

√
2
π

cosh
π
2

1√
n

(
1 +O

(
1
n

))

×



(−1)n/2 cos(θ − log(2n)/2) n is even

(−1)(n+1)/2 sin(θ − log(2n)/2) n odd

where θ := arg Γ ((1+ i)/2).
Analysis is easy given the following striking hy-

pergeometric parametrization of (24) when
a = b ≠ 0 (see [18]), which was both experimen-
tally discovered and is computer provable:

tn(a,a) = 1
2
Fn(a)+ 1

2
Fn(−a),(25)

where

Fn(a) := − an21−ω

ωβ(n+ω,−ω) 2F1

(
ω,ω;n+ 1+ω;

1
2

)
.

Here

β(n+ 1+ω,−ω) := Γ (n+ 1)
Γ (n+ 1+ω) Γ (−ω)

, and

ω := 1− 1/a
2

.

Indeed, once (25) was discovered by a combination
of insight and methodical computer experiment, its
proof became highly representative of the chang-
ing paradigm: both sides satisfy the same recursion
and the same initial conditions. This can be checked
in Maple, and if one looks inside the computation,
one learns which confluent hypergeometric identi-
ties are needed for an explicit human proof.

As noted, study of R devolved to hard but com-
pelling conjectures on complex dynamics, with
many interesting proven and unproven general-
izations. In [23] consideration is made of contin-
ued fractions like

S1(a) = 12a2
1

1+ 22a2
2

1+ 32a2
3

1+ . . .

for any sequence a ≡ (an)∞n=1 and convergence
properties obtained for deterministic and random
sequences (an). For the deterministic case the best
results obtained are for periodic sequences, satis-
fying aj = aj+c for all j and some finite c. The dy-
namics are considerably more varied, as illustrated
in Figure 4.
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Coincidence and Fraud
Coincidences do occur, and such examples drive
home the need for reasonable caution in this en-
terprise. For example, the approximations

π ≈ 3√
163

log(640320), π ≈
√

2
9801
4412

occur for deep number theoretic reasons: the first
good to fifteen places, the second to eight. By con-
trast

eπ −π = 19.999099979189475768 . . . ,

most probably for no good reason. This seemed
more bizarre on an eight-digit calculator. Likewise,
as spotted by Pierre Lanchon recently,

e = 10.10110111111000010101000101100 . . .

while

π = 11.0010010000111111011010101000 . . .

have 19 bits agreeing in base two—with one reading
right to left. More extended coincidences are almost
always contrived, as illustrated by the following:

∞∑
n=1

[n tanh(π/2)]
10n

≈ 1
81
,

∞∑
n=1

[n tanh(π )]
10n

≈ 1
81
.

The first holds to 12 decimal places, while the sec-
ond holds to 268 places. This phenomenon can be
understood by examining the continued fraction ex-
pansion of the constants tanh(π/2) and tanh(π ):
the integer 11 appears as the third entry of the first,
while 267 appears as the third entry of the second.

Bill Gosper, commenting on the extraordinary ef-
fectiveness of continued-fraction expansions to
“see” what is happening in such problems, de-
clared, “It looks like you are cheating God some-
how.”

A fine illustration is the unremarkable decimal
α = 1.4331274267223117583 . . . whose contin-
ued fraction begins [1,2,3,4,5,6,7,8,9 . . .] and so
most probably is a ratio of Bessel functions. Indeed,
I0(2)/I1(2) was what generated the decimal. Simi-
larly, π and e are quite different as continued frac-
tions, less so as decimals.

A more sobering example of high-precision
“fraud” is the integral

π2 :=
∫∞

0
cos(2x)

∞∏
n=1

cos
(x
n

)
dx.(26)

The computation of a high-precision numerical
value for this integral is rather challenging, due in
part to the oscillatory behavior of 

∏
n≥1 cos(x/n)

(see Figure 2), but mostly due to the difficulty of
computing high-precision evaluations of the inte-
grand function. Note that evaluating thousands of
terms of the infinite product would produce only

a few correct digits. Thus it is necessary to rewrite
the integrand function in a form more suitable for
computation. This can be done by writing

f (x) = cos(2x)


 m∏

1

cos(x/k)


 exp(fm(x)),(27)

where we choose m > x , and where

fm(x) =
∞∑

k=m+1

log cos
(x
k

)
.(28)

The log cos evaluation can be expanded in a Tay-
lor series [1, p. 75], as follows:

log cos
(x
k

)
=

∞∑
j=1

(−1) j22j−1(22j − 1)B2j

j(2j)!

(x
k

)2j
,

where B2j are Bernoulli numbers. Note that since
k > m > x in (28), this series converges. We can now
write

fm(x) =
∞∑

k=m+1

∞∑
j=1

(−1) j22j−1(22j − 1)B2j

j(2j)!

(x
k

)2j

= −
∞∑
j=1

(22j − 1)ζ(2j)
jπ2j


 ∞∑
k=m+1

1
k2j


x2j

= −
∞∑
j=1

(22j − 1)ζ(2j)
jπ2j


ζ(2j)−

m∑
k=1

1
k2j


x2j .

This can now be written in a compact form for com-
putation as

fm(x) = −
∞∑
j=1

ajbj,mx2j ,(29)

where

(30)

aj =
(22j − 1)ζ(2j)

jπ2j ,

bj,m = ζ(2j)−
m∑
k=1

1/k2j .

n=2
n=5
n=10
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Figure 5. First few terms of 
∏
n≥1 cos(x/k) .
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Computation of these b coefficients must be done
to a much higher precision than that desired for
the quadrature result, since two very nearly equal
quantities are subtracted here.

The integral can now be computed using, for ex-
ample, the tanh-sinh quadrature scheme. The first
60 digits of the result are the following:

0.3926990816987241548078304229099

37860524645434187231595926812 . . . .
At first glance, this appears to be π/8. But a care-
ful comparison with a high-precision value of π/8,
namely

0.3926990816987241548078304229099

37860524646174921888227621868 . . . ,

reveals that they are not equal: the two values dif-
fer by approximately 7.407× 10−43. Indeed, these
two values are provably distinct. The reason is 
governed by the fact that 

∑55
n=1 1/(2n+ 1) > 2 >∑54

n=1 1/(2n+ 1). See [16, Chap. 2] for additional
details.

A related example is the following. Recall the sinc
function

sinc(x) := sinx
x
.

Consider the seven highly oscillatory integrals
below.

I1 :=
∫∞

0
sinc(x)dx = π

2
,

I2 :=
∫∞

0
sinc(x)sinc

(x
3

)
dx = π

2
,

I3 :=
∫∞

0
sinc(x)sinc

(x
3

)
sinc

(x
5

)
dx = π

2
,

. . .

I6 :=
∫∞

0
sinc(x)sinc

(x
3

)
· · · sinc

( x
11

)
dx = π

2
,

I7 :=
∫∞

0
sinc(x)sinc

(x
3

)
· · · sinc

( x
13

)
dx = π

2
.

However,

I8 :=
∫∞

0
sinc(x)sinc

(x
3

)
· · · sinc

( x
15

)
dx

= 467807924713440738696537864469
935615849440640907310521750000

π

≈ 0.499999999992646π.

When this was first found by a researcher using a
well-known computer algebra package, both he
and the software vendor concluded there was a
“bug” in the software. Not so! It is easy to see that
the limit of these integrals is 2π1, where

π1 :=
∫∞

0
cos(x)

∞∏
n=1

cos
(x
n

)
dx.(31)

This can be seen via Parseval’s theorem, which
links the integral

IN :=
∫∞

0
sinc(a1x)sinc (a2x) · · · sinc (aNx) dx

with the volume of the polyhedron PN given by

PN := {x : |
N∑
k=2

akxk| ≤ a1, |xk| ≤ 1,2 ≤ k ≤ N},

where x := (x2, x3, · · · , xN ). If we let

CN := {(x2, x3, · · · , xN ) : −1 ≤ xk ≤ 1,2 ≤ k ≤ N},
then

IN = π
2a1

Vol(PN )
Vol(CN )

.

Thus, the value drops precisely when the con-
straint 

∑N
k=2 akxk ≤ a1 becomes active and bites

the hypercube CN . That occurs when 
∑N
k=2 ak > a1.

In the above, 13 +
1
5 + · · · +

1
13 < 1, but on addition

of the term 1
15, the sum exceeds 1, the volume

drops, and IN = π
2 no longer holds. A similar analy-

sis applies to π2. Moreover, it is fortunate that we
began with π1 or the falsehood of the identity anal-
ogous to that displayed above would have been
much harder to see.

Further Directions and Implications
In spite of the examples of the previous section, it
must be acknowledged that computations can in
many cases provide very compelling evidence for
mathematical assertions. As a single example, re-
cently Yasumasa Kanada of Japan calculated π to
over one trillion decimal digits (and also to over one
trillion hexadecimal digits). Given that such com-
putations—which take many hours on large, state-
of-the-art supercomputers—are prone to many
types of error, including hardware failures, system
software problems, and especially programming
bugs, how can one be confident in such results?

In Kanada’s case, he first used two different
arctangent-based formulas to evaluate π to over
one trillion hexadecimal digits. Both calculations

Figure 6. Advanced Collaborative Environment in Vancouver.
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agreed that the hex expansion beginning at 
position 1,000,000,000,001 is B4466E8D21
5388C4E014. He then applied a variant of the BBP
formula for π , mentioned in Section 3, to calculate
these hex digits directly. The result agreed exactly.
Needless to say, it is exceedingly unlikely that 
three different computations, each using a com-
pletely distinct computational approach, would 
all perfectly agree on these digits unless all three
are correct.

Another, much more common, example is the
usage of probabilistic primality testing schemes.
Damgard, Landrock, and Pomerance showed in
1993 that if an integer n has k bits, then the prob-
ability that it is prime, provided it passes the most
commonly used probabilistic test, is greater than
1− k242−

√
k , and for certain k is even higher [25].

For instance, if n has 500 bits, then this probabil-
ity is greater than 1− 1/428m . Thus a 500-bit 
integer that passes this test even once is prime 
with prohibitively safe odds: the chance of a false
declaration of primality is less than one part in Avo-
gadro’s number (6× 1023) . If it passes the test for
four pseudorandomly chosen integers a, then the
chance of false declaration of primality is less than
one part in a googol (10100) . Such probabilities are
many orders of magnitude more remote than the
chance that an undetected hardware or software
error has occurred in the computation. Such meth-
ods thus draw into question the distinction be-
tween a probabilistic test and a “provable” test.

Another interesting question is whether these
experimental methods may be capable of discov-
ering facts that are fundamentally beyond the reach
of formal proof methods, which, due to Gödel’s re-
sult, we know must exist; see also [24].

One interesting example, which has arisen in our
work, is the following. We mentioned in Section 3
the fact that the question of the 2-normality of π
reduces to the question of whether the chaotic it-
eration x0 = 0 and

xn =
{

16xn−1 +
120n2 − 89n+ 16

512n4 − 1024n3 + 712n2 − 206n+ 21

}
,

where {·} denotes fractional part, are equidistrib-
uted in the unit interval.

It turns out that if one defines the sequence
yn = �16xn� (in other words, one records which of
the 16 subintervals of (0,1), numbered 0 through
15, xn lies in), that the sequence (yn), when inter-
preted as a hexadecimal string, appears to pre-
cisely generate the hexadecimal digit expansion of
π . We have checked this to 1,000,000 hex digits and
have found no discrepancies. It is known that (yn)
is a very good approximation to the hex digits of
π , in the sense that the expected value of the num-
ber of errors is finite [15, Section 4.3] [11]. Thus
one can argue, by the second Borel-Cantelli lemma,
that in a heuristic sense the probability that there

is any error among the remaining digits after the
first million is less than 1.465× 10−8 [15, Section
4.3]. Additional computations could be used to
lower this probability even more.

Although few would bet against such odds, these
computations do not constitute a rigorous proof
that the sequence (yn) is identical to the hexadec-
imal expansion of π . Perhaps someday someone
will be able to prove this observation rigorously.
On the other hand, maybe not—maybe this 
observation is in some sense an “accident” of 
mathematics, for which no proof will ever be 
found. Perhaps numerical validation is all we can
ever achieve here.

Conclusion
We are only now beginning to digest some very old
ideas:

Leibniz’s idea is very simple and very
profound. It’s in section VI of the Dis-
cours [de métaphysique]. It’s the obser-
vation that the concept of law becomes
vacuous if arbitrarily high mathemati-
cal complexity is permitted, for then
there is always a law. Conversely, if the
law has to be extremely complicated,
then the data is irregular, lawless, ran-
dom, unstructured, patternless, and
also incompressible and irreducible. A
theory has to be simpler than the data
that it explains, otherwise it doesn’t ex-
plain anything.  —Gregory Chaitin [24]

Chaitin argues convincingly that there are many
mathematical truths which are logically and com-
putationally irreducible—they have no good reason
in the traditional rationalist sense. This in turn
adds force to the desire for evidence even when
proof may not be possible. Computer experiments

Figure 7. Polyhedra in an immersive environment.
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can provide precisely the sort of evidence that is
required.

Although computer technology had its roots in
mathematics, the field is a relative latecomer to the
application of computer technology, compared,
say, with physics and chemistry. But now this is
changing, as an army of young mathematicians,
many of whom have been trained in the usage of
sophisticated computer math tools from their high
school years, begin their research careers. Further
advances in software, including compelling new
mathematical visualization environments (see Fig-
ures 6 and 7), will have their impact. And the re-
markable trend towards greater miniaturization
(and corresponding higher power and lower cost)
in computer technology, as tracked by Moore’s
Law, is pretty well assured to continue for at least
another ten years, according to Gordon Moore him-
self and other industry analysts. As Richard Feyn-
man noted back in 1959, “There’s plenty of room
at the bottom” [27]. It will be interesting to see what
the future will bring.
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of multiple polylogarithms, Trans. Amer. Math. Soc.
353 (2001), 907–41.

[23] JONATHAN M. BORWEIN and D. RUSSELL LUKE, 
Dynamics of generalizations of the AGM continued
fraction of Ramanujan. Part I: Divergence,
http://www.cs.dal.ca/~jborwein/BLuke.pdf
(2004).

[24] GREGORY CHAITIN, Irreducible complexity in pure 
mathematics, http://arxiv.org/math.HO/0411091
(2004).

[25]I. DAMGARD, P. LANDROCK, and C. POMERANCE, 
Average case error estimates for the strong probable
prime test, Math. of Comp. 61 (1993), 177–94.

[26] HELAMAN R. P. FERGUSON, DAVID H. BAILEY, and STEPHEN

ARNO, Analysis of PSLQ, an integer relation finding 
algorithm, Math. of Comp. 68 (1999), 351–69.

[27] RICHARD FEYNMAN, There’s plenty of room at the 
bottom, http://engr.smu.edu/ee/smuphotonics/
Nano/FeynmanPlentyofRoom.pdf (1959).

[28] L. KUIPERS and H. NIEDERREITER, Uniform Distribution of
Sequences, Wiley-Interscience, Boston, 1974.

[29] GORDON E. MOORE, Cramming more components onto
integrated circuits, Electronics 38 (1965), 114–7.

http://www.cs.dal.ca/~jborwein/z21.pdf
http://www.cs.dal.ca/~jborwein/z21.pdf
http://www.cs.dal.ca/~jborwein/BLuke.pdf
http://arxiv.org/math.HO/0411091
http://engr.smu.edu/ee/smuphotonics/Nano/FeynmanPlentyofRoom.pdf
http://engr.smu.edu/ee/smuphotonics/Nano/FeynmanPlentyofRoom.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/alpha-normal.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/alpha-normal.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/tenproblems.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/tenproblems.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/ladder.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/ladder.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/quadrature.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/quadrature.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/quadparallel.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/quadparallel.pdf

